

Sorption Friends III

Taormina – 02.05.2023

HEIG-VD/IGT-LESBAT activities

Xavier Jobard & Alexis Duret

xavier.jobard@heig-vd.ch +41 24 557 28 17 www.lesbat.ch https://heig-vd.ch/rad/instituts/igt

alexis.duret@heig-vd.ch +41 24 557 23 26

<u>ts/igt</u>

School of management and Engineering Vaud

3 Sites:

- 13Research Institutes
- 17 Millions (CHF) on R&D projects
- 60 Continuing education courses
- 67 Millions (CHF) of budget
- 700 Staff members (180 Professors or equivalent)
- 2'000 Students

Member of the institute for thermal energy

Key figures:

- 15 staff members
- More than 20 years of expertise
- Initial training: 700 hr/an (BSc, MSc)
- Continuing education: 180 hr/an
- Annual R&D turnover: ~1'000'000.- CHF

Lab. of Solar Energetics and Building Physics

Solar Thermal and storage

- Solar Heating and Cooling for Buildings
- Solar Heat in Industrial
 Processes and DH
- Thermal Energy Storage

TRANSVERSAL COMPETENCES

Building energy Systems

- sorption technologies for cooling/heating
- Geothermal systems
- Multi-energy systems for neighborhoods

Buildings Physics

- Reuse of buildings
 construction materials
- Retrofit of historical or not buildings
- Building energy simulation & modelling

Life Cycle Assessment (Simapro & Brightway)

Modeling and Dynamic Simulation (TRNSYS – IDA-ICE)

Experimental equipment

• 3 hydraulics loops

HE IG

Institut de Génie thermique

- Emulation of maximum 2 heat sources
- Emulation of 1 heat consumer and 1 cold consumer at the same time
- Increased stability with small buffer tanks

Test bench in cooling configuration						
Heat source	Heating rate	20	kW			
	Storage capacity	300	Ι			
	Volume flow rate	3000	l/h			
Intermediate sink	Cooling rate	24	kW			
	Volume flow rate	6000	l/h			
Cold source	Heating rate	13	kW			
	Volume flow rate	3000	l/h			

Example of past projects :

Solar Fridge (2001-2010)	•	Development of a autonomous solar fridge Deployment of a working prototype in western Africa		Ecouter - Innover - Partager
Monitoring of a solar cooling plant in Geneva (2008-2010)	•	Performance validation of the system (absorption chiller Formulation of optimization measures	-)	
Project THRIVE (2014-2018) Rational Research Programme	•	Valorization of waste heat with adsorption heat pumps Experimental characterization of adsorption heat pumps and simulations	Source of local parts	Thermond and Provide and Provide and the second a
PACs-CAD project (2017-2021)	•	Deployment potential of sorption heat pumps in district heating Development and validation of a TRNSYS model of a substation integrating a sorption heat pump.		Image: Second system Mess-so Bigs: Second system

On-going project : CharacSorb

District heating networks suffers from :

- Low efficiency caused by high operating temperatures, especially high return temperatures that lead to extra cost
- Low utilization of the DHN in summertime (only domestic hot water is used in the buildings) which leads to inefficient operation conditions and long amortization time.

HE

IG

IGT

Institut de

List of LESBAT main contributions:

- 1. Interface between industry & research
- 2. Provide **inputs/constraints** to develop new sorbent materials (EMPA) & sorption bed (OST-SPF)
- 3. Calibrate a **numerical model** against experimental data
- 4. Performances evaluation of new sorbents and sorption bed configuration for new applications
- **5. Formulation of guidelines** for implementing sorption technologies in DH

LESBAT interest for AdHP

Skills & assets:

- 1. Operationnal test bench for various sorption heat pump and chiller applications
- Silica gel adsoprtion chiller : Fahrenheit ecoo 10 ~13 kW
 @ 85°C/27°C/15°C
- 3. Modular district heating substation intergrating an adHPs
- 4. Mainteners of TRNSYS Type 860*
 - model is validated
 - calibrated with a commercial heat pump

*Dalibard, A., 2017. Advanced control strategies of solar driven adsorption chillers, 1. Auflage. ed, Forschungsberichte des Deutschen Kälte- und Klimatechnischen Vereins e.V. DKV e.V., Deutscher Kälte- und Klimatechnischer Verein, Hannover.

Interests of LESBAT in future sorption HP development:

- Application for renewable cooling

 → a lot of interest from DH operators (waste incineration, ...)
 → small system are not competitive
- 2. Strategies to avoid high investment in recooler (DHW preheating, heat source for HP..!??)
- 3. Heat adapter concept for DH extension (interconnexion between a high temperature grid and low temperature grid)
- 4. Heat transformers for medium/low temperature waste heat valorization:

 \rightarrow Valorization of air and lake water heat in combination with electric HP

Merci pour votre attention...

... des questions!!

E/XI

Pemereiemente à l'OFEN nour le coutien financier du projet ChargeSorh